Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation.
نویسندگان
چکیده
AIMS To determine acetic acid, acetaldehyde and glycerol production by wine yeast throughout Icewine fermentation. The expression of yeast cytosolic aldehyde dehydrogenases (ALD3 and ALD6) and glycerol-3-phosphate dehydrogenase (GPD1) were followed to relate metabolites in the wines to expression patterns of these genes. METHODS AND RESULTS Icewine juice (38.8 degrees Brix, 401 +/- 7 g l(-1) sugar), diluted Icewine juice (21.3 degrees Brix, 211 +/- 7 g l(-1) sugar) and the diluted juice with sugar levels equal to the original Icewine juice (35.6 degrees Brix, 402 +/- 6 g l(-1) sugar) were fermented in triplicate using the commercial wine yeast K1-V1116. Acetic acid production increased 7.1-fold and glycerol production increased 1.8-fold in the Icewine fermentation over that found in the diluted juice fermentation. ALD3 showed a 6.2-fold induction and GPD1 showed a 2.5-fold induction during Icewine vs the diluted fermentation. ALD3 was not glucose repressed when additional sugar was added to diluted juice, but was upregulated 7.0-fold. CONCLUSIONS The NAD+-dependant aldehyde dehydrogenase encoded by ALD3 appears to contribute to acetic acid production during Icewine fermentation. Expression of GPD1 was upregulated in high sugar fermentations and reflects the elevated levels of glycerol. Solutes in Icewine juice in addition to sugar contribute to the yeast metabolic response. SIGNIFICANCE AND IMPACT OF THE STUDY This work represents the first descriptive analysis of the fermentation of Canadian Icewine, the expression patterns of yeast genes involved in metabolite production, and their impact on Icewine quality. A role for ALD3 in acetic acid production during Icewine fermentation was found.
منابع مشابه
Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
AIMS We previously reported that the aldehyde dehydrogenase encoded by ALD3 but not ALD6 was responsible, in part, for the increased acetic acid found in Icewines based on the expression profile of these genes during fermentation. We have now completed the expression profile of the remaining yeast aldehyde dehydrogenase genes ALD2, ALD4 and ALD5 during these fermentations to determine their con...
متن کاملModulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase.
The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compa...
متن کاملExpression of GPD1 and SIP18 genes during rehydration in active dry industrial Saccharomyces cerevisiae cider-making yeast strains (ADY).
In this study we determined the influence of different sugar concentration in media, time of rehydration and type of strain on relative expression level of GPD1 and SIP18 genes of active dry cider-making yeast strains, followed by the assessment of the impact of rehydration on the fermentation process. High expression of SIP18 at the beginning of rehydration was shown to be due to high transcri...
متن کاملEffects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three com...
متن کاملGlycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase
Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied microbiology
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2005